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Abstract

A novel numerical approach, termed the partial bounce back scheme, is introduced within the framework of the thermal lattice Boltzmann
method to account for thermal contact resistance between contacting surfaces. The correlation between thermal contact resistance and the partial
bounce back parameter is established. A special case of the scheme leads to a new approach that can be directly applied for the treatment of
adiabatic thermal boundary conditions in the thermal lattice Boltzmann method. Numerical examples are provided to validate and demonstrate
the accuracy and effectiveness of the proposed methodology.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In recent years, the lattice Boltzmann method (LBM) has
emerged as an alternative to conventional computational fluid
dynamics methods employing Navier–Stokes equations. It has
found extensive applications in simulating isothermal flows of
various complexities, see for instance [1–8]. There has also
been an ongoing effort in the construction of stable thermal
lattice Boltzmann methods (TLBM) to solve heat transfer prob-
lems. In the early works, the isothermal lattice Boltzmann
model is extended with additional velocities to obtain the tem-
perature evolution. The inclusion of higher order velocity terms
in the LBM leads to numerical instabilities and hence the tem-
perature variation is limited to a narrow range. To overcome the
defects, He et al. [9] introduce a double population approach,
using a density distribution function to simulate hydrodynam-
ics for fluid flows and an internal energy distribution function to
simulate thermodynamics for heat transfer. This model has bet-
ter numerical stability and the viscous heat dissipation and com-
pression work done by the pressure can be solved fundamen-
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tally. As a result, it has been extensively adopted by researchers
to solve various thermo-hydrodynamic problems [10–13].

With regard to the thermal boundary conditions, several
methods have been developed. D’Orazio et al. [14] propose a
thermal counter-slip approach, in which a counter-slip thermal
energy density is assumed for boundary nodes and is deter-
mined consistently with Dirichlet or Neumann boundary con-
straints; Tang et al. [15] introduce a thermal boundary treatment
by decomposing the internal energy distribution functions at
the boundary nodes into equilibrium and nonequilibrium parts;
Huang et al. [16] propose a thermal curved wall boundary
scheme based on the idea of non-slip wall boundary treatment
for isothermal LBM.

In this work, we attempt to incorporate thermal contact re-
sistance into the thermal lattice Boltzmann framework. Thermal
contact resistance exists when two solid bodies come in contact.
Heat flows from the hotter body to the colder body, and a tem-
perature drop is usually observed at the interface between the
two surfaces in contact. Thermal contact resistance can be very
important in a number of applications. It is however a compli-
cated phenomenon influenced by many factors, among which
surface roughness is believed to play a central role as no real
surface is perfectly smooth. Unfortunately there is no satisfac-
tory theory which will predict thermal contact resistance for all
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Nomenclature

fi, f̄i fluid density distribution function in the ith direc-
tion

f
eq
i fluid equilibrium distribution function in the ith

direction
gi, ḡi internal energy distribution functions in the ith

direction
g

eq
i internal energy equilibrium distribution function in

the ith direction
ei discrete velocity in the ith direction
Zi effect of viscous heating
t time
�t time step
τf non-dimensional fluid relaxation time
τg non-dimensional internal energy relaxation time
u velocity vector

p pressure
T temperature
q heat flux
ρ fluid density
ε internal energy per unit mass
c lattice speed
cs fluid speed of sound
μ kinematic viscosity
α thermal diffusivity
κg thermal conductivity
δ partial bounce back parameter
Rg,RT thermal resistance per lattice, total thermal resis-

tance
Rc thermal contact resistance
types of engineering materials, nor have experimental studies
yielded completely reliable empirical correlations [17].

A novel numerical approach, termed the partial bounce back
(PBB) scheme, is proposed within the TLBM framework to ac-
count for the effect of thermal contact resistance between the
contacting surfaces. The PPB scheme can also be applied for the
treatment of adiabatic thermal boundary conditions in a straight
forward manner.

2. The thermal lattice Boltzmann method

In the double population thermal lattice Boltzmann method
(TLBM) proposed by He et al. [9], the flow and the temperature
fields are solved by the following two evolution equations

f̄i (x + ei�t, t + �t) − f̄i (x, t)

= − 1

τf + 0.5

[
f̄i (x, t) − f

eq
i (x, t)

]
(1)

ḡi (x + ei�t, t + �t) − ḡi (x, t)

= − 1

τg + 0.5

[
ḡi (x, t) − g

eq
i (x, t)

] − τg

τg + 0.5
fiZi (2)

where

f̄i = fi + 0.5

τf

(
fi − f

eq
i

)
(3)

ḡi = gi + 0.5

τg

(
gi − g

eq
i

) + �t

2
fiZi (4)

in which fi and gi are respectively the density distribution func-
tion and the internal energy distribution function with discrete
velocity ei along the ith direction; f

eq
i and g

eq
i are the corre-

sponding equilibrium distribution functions; τf and τg are re-
spectively the non-dimensional momentum and internal energy
relaxation times which control the rate of change to equilib-
rium; and �t is the time step. The left-hand sides of Eqs. (1)
and (2) denote the streaming process while the right-hand sides
model the collisions through relaxation.
The term Zi = (ei − u) · [∂u/∂t + (ei · ∇)u] represents the
effect of viscous heating and can be expressed as [14]

Zi = (ei − u) · [u(x + ei�t, t + �t) − u(x, t)]
�t

(5)

In the widely used D2Q9 model, the fluid particles at each
node move to their eight immediate neighbouring nodes with
discrete velocities ei (i = 1, . . . ,8). A proportion of the parti-
cles can remain at the node, which is equivalent to moving with
a zero velocity e0. The nine discrete velocity vectors are given
by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e0 = (0,0)

e1 = c(1,0); e2 = c(0,1)

e3 = c(−1,0); e4 = c(0,−1)

e5 = c(1,1); e6 = c(−1,1)

e7 = c(−1,−1); e8 = c(1,−1)

(6)

where c = �x/�t is the lattice speed with �x being the lattice
spacing. For gas flows, c can be defined as

c = √
3RTm

where R is the gas constant and Tm the average temperature.
The equilibrium distribution functions f

eq
i and g

eq
i are de-

fined in the D2Q9 model respectively as

f
eq
i = wiρ

[
1 + 3(ei · u)

c2
+ 9(ei · u)2

2c4
− 3(u · u)

2c2

]
(7)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
eq
0 = w0ρε

[
−3(u · u)

2c2

]

g
eq
i = wiρε

[
3

2
+ 3(ei · u)

2c2
+ 9(ei · u)2

2c4
− 3(u · u)

2c2

]

(i = 1,2,3,4)

g
eq
i = wiρε

[
3 + 6(ei · u)

c2
+ 9(ei · u)2

2c4
− 3(u · u)

2c2

]

(i = 5,6,7,8)

(8)

in which wi are the weighting factors with w0 = 4/9, wi = 1/9
for i = 1,2,3,4 and wi = 1/36 for i = 5,6,7,8; and ρε is
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the internal energy which can be replaced by temperature T to
simplify the calculation of gi if the flow is incompressible or
the compressibility can be ignored.

The macroscopic variables, such as density ρ, velocity u,
internal energy per unit mass ε, and heat flux q , can be calcu-
lated from the zeroth and first order moments of the distribution
functions as

ρ =
∑

f̄i; ρu =
∑

f̄iei

ρε =
∑

ḡi − �t

2

∑
fiZi

q =
(∑

ei ḡi − ρεu − �t

2

∑
eifiZi

) τg

τg + 0.5
(9)

The fluid pressure p is determined by the equation of state

p = c2
s ρ (10)

where cs is termed the fluid speed of sound and is related to the
lattice speed c by

cs = c/
√

3 (11)

The kinematic viscosity ν and thermal diffusivity α of the fluid
are determined as

ν = 1

3
τf c2�t; α = 2

3
τgc

2�t (12)

Note that for solids, the above equations are much simpler due
to u = 0.

3. Modelling of thermal contact resistance within the
framework of TLBM

3.1. Derivation of thermal resistance in TLBM

Consider a steady-state heat conduction problem in a 2D rec-
tangular bar, as shown in Fig. 1. Both the top and bottom sides
of the bar are insulated. Heat flows only in the axial direction,
and thus it is equivalent to a 1D heat conduction problem. As-
sume that nodes I and J are two adjacent nodes in the lattice
discretisation of the bar. Under steady state conditions, the fol-
lowing relations can be established for some internal energy
distribution functions:

g2 = g4 = g
eq
2 = 1

6
T ; g5 = g8; g6 = g7 (13)

The axial heat flux at each node is calculated as

qx =
(∑

ei,xgi

) τg

τg + 0.5
(14)

where ei,x is the x component of ei .

Fig. 1. Heat conduction in a 2D uniform bar with the top and bottom sides
insulated.
Denoting q ′
x = ∑

ei,xgi , we have

q ′
x = gI

1 − gI
3 + 2

(
gI

5 − gI
7

)
= gJ

1 − gJ
3 + 2

(
gJ

5 − gJ
7

)
(15)

The temperature at node I is given by

T I =
∑

gI
i

By making use of the relations in Eq. (13), the above equation
can be rewritten as

2

3
T I = gI

1 + gI
3 + 2

(
gI

5 + gI
7

)
(16)

Combining Eqs. (15) and (16) gives⎧⎪⎨
⎪⎩

gI
1 + 2gI

5 = 1

3
T I + 1

2
q ′
x

gI
3 + 2gI

7 = 1

3
T I − 1

2
q ′
x

(17)

Similarly, the following relations hold for node J :⎧⎪⎨
⎪⎩

gJ
1 + 2gJ

5 = 1

3
T J + 1

2
q ′
x

gJ
3 + 2gJ

7 = 1

3
T J − 1

2
q ′
x

(18)

According to the evolution equation of the internal energy dis-
tribution functions, gJ

1 and gJ
5 are calculated as⎧⎪⎪⎪⎨

⎪⎪⎪⎩

gJ
1 = gI

1 − 1

τg + 0.5

(
gI

1 − 1

6
T I

)

gJ
5 = gI

5 − 1

τg + 0.5

(
gI

5 − 1

12
T I

) (19)

By substituting Eq. (19) into Eqs. (17) and (18), q ′
x can be ex-

pressed as

q ′
x = �T

/ 3

2(τg + 0.5)

where �T = T I − T J denotes the temperature difference be-
tween nodes I and J . Then the heat flux per lattice grid is
determined as

qx = τg

τg + 0.5
q ′
x = �T

/ 3

2τg

(20)

Thus the thermal resistance per lattice grid, Rg , is found to be

Rg = �T

qx

= 3

2τg

= c2�t

α
(21)

and the equivalent thermal conductivity is calculated as

κg = 1

Rg

= 2τg

3
= α

c2�t
(22)

3.2. Partial bounce back scheme

Assume that Ω1 and Ω2 are two solid bodies in contact; I

and J are two adjacent boundary nodes, respectively for Ω1 and
Ω2, and the contact surface with a thermal contact resistance
Rc lies in the middle of the link between nodes I and J , as
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Fig. 2. Partial bounce back scheme: streamed density function in any direction
is partially bounced back along the opposite direction.

indicated in Fig. 2. A partial bounce back (PBB) scheme within
the TLBM framework is proposed in this work to account for
thermal contact resistance.

The idea of the PBB scheme is simple: only a portion of the
internal energy of a boundary node of body Ω1/Ω2 is allowed
to propagate to its adjacent boundary node of body Ω2/Ω1,
and the remaining portion is bounced back to the node itself
with opposite direction. For instance, if gI

i is the internal en-
ergy distribution function of boundary node I of body Ω1 in
the ith direction, and let δ denote a parameter between [0,1],
then (1−δ)gI

i is the amount to be streamed to node J , a bound-
ary node of body Ω2 adjacent to node I , while the amount δgI

i

is bounced back to node I in the direction −i.
It is important to choose the parameter δ so that the thermal

contact resistance can be correctly represented. The following
derivation aims to establish a correlation between δ and thermal
contact resistance Rc. Referring to Fig. 2, the internal energy
distribution functions of node I are obtained using the PPB
scheme as

gI
3 = δg̃I

1 + (1 − δ)g̃J
3 (23)

gI
7 = δg̃I

5 + (1 − δ)g̃J
7 (24)

where

g̃I
1 = gI

1 − 1

τ ′
g

(
gI

1 − 1

6
T I

)
(25)

g̃I
5 = gI

5 − 1

τ ′
g

(
gI

5 − 1

12
T I

)
(26)

are the post-collision internal energy distribution functions and
τ ′
g = τg + 0.5. Combining Eqs. (25) and (26) gives

g̃I
1 + 2g̃I

5 =
(

1 − 1

τ ′
g

)(
gI

1 + 2gI
5

) + 1

3τ ′
g

T I (27)

Similarly,

g̃J
3 = gJ

3 − 1

τ ′
g

(
gJ

3 − 1

6
T J

)
(28)

g̃J
7 = gJ

7 − 1

τ ′

(
gJ

7 − 1

12
T J

)
(29)
g

and

g̃J
3 + 2g̃J

7 =
(

1 − 1

τ ′
g

)(
gJ

3 + 2gJ
7

) + 1

3τ ′
g

T J (30)

By summing Eqs. (23) and (24) and utilising Eq. (18), we have

gI
3 + 2gI

7 = δ
(
g̃I

1 + 2g̃I
5

) + (1 − δ)
(
g̃J

3 + 2g̃J
7

)
= 1

3
T I − 1

2
q ′
x (31)

Substituting Eqs. (27) and (30) into the above equation and re-
arranging leads to the following expression for q ′

x

q ′
x = T I − T J

R′
where

R′ = 3

1 − δ

(
δ − δ

τ ′
g

+ 1

2τ ′
g

)
(32)

The heat flux equals

qx = τg

τg + 0.5
q ′
x = 2τ ′

g − 1

2τ ′
g

q ′
x

Consequently, the total thermal resistance RT , including ther-
mal contact resistance Rc , between nodes I and J is obtained
as

RT = 2τ ′
g

2τ ′
g − 1

R′ = 3δ

1 − δ
+ 3

2τg

(33)

Since the lattice gird resistance Rg = 3/2τg , the thermal contact
resistance Rc of the two contacting bodies Ω1 and Ω2 is thus
given by

Rc = RT − Rg = 3δ

1 − δ
(34)

The corresponding equivalent thermal conductivity can be ex-
pressed as

κc = 1

Rc

= 1 − δ

3δ
(35)

Eqs. (34) and (35) provide the relationship between the par-
tial bounce back parameter δ and the thermal contact resistance
Rc or conductivity κc. With δ varying in [0,1], the effect of
different thermal contact resistance can be achieved. In partic-
ular, when δ = 0 no thermal contact resistance exists; whereas
when δ = 1, the incoming internal energy population is fully
reflected back so that the contact surface serves as an insulated
wall, which provides a new treatment for enforcing the fully
insulated thermal boundary condition in the TLBM.

4. Numerical illustrations

4.1. Validation of the PPB scheme

To validate the proposed partial bounce back scheme, partic-
ularly the correlation in Eq. (34) between thermal contact resis-
tance Rc and the parameter δ, a numerical example is provided.
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Fig. 3. Computed temperature distribution along the centerline of a 2D bar for different δ.

Table 1
Simulated and theoretical temperature drop at the contact surface

δ 0.5 0.8 0.9 0.99 0.999 0.9999 1.0

Theoretical 0.000505 0.00398 0.00892 0.09008 0.49975 0.90908 1.0
Simulated 0.000504 0.00396 0.00891 0.08996 0.49961 0.90896 0.99998
The problem considers two connected equally sized rectangu-
lar bars with thermal contact resistance at the interface. The
bars have the same initial temperature (0◦) and thermal proper-
ties. The left and right walls are maintained at different constant
temperatures with Tleft = 0◦ and Tright = 1◦, whereas the top
and bottom walls are adiabatic to ensure a one-dimensional heat
conduction situation. The domain is divided into a 200×20 lat-
tice grid, and τg = 0.1.

Simulated with the PPB scheme for different δ, the tem-
perature distribution along the centerline of the bars is shown
in Fig. 3. The temperature drop at the contact surface is very
small for δ < 0.9, then increases with the increase of δ. When
δ = 1.0, the contact surface becomes an insulated wall, i.e.
no heat flows in or out of the surface. Table 1 gives a com-
parison of the temperature drop at the contact surface simu-
lated with the PPB scheme and the theoretical value determined
by

�Tc = Rc

Rc + nRg

(36)

where n = 200 is the number of lattice nodes in the axial di-
rection of the bars. The derivation of this formula is trivial and
thus omitted here. It is evident that an excellent agreement of
the results is achieved and thus the relationship between δ and
Rc given by (34) is validated.
Fig. 4. Problem setup for natural convection in a square cavity.

4.2. Application of the PPB scheme to adiabatic thermal
boundary conditions

The proposed partial bounce back scheme can also be di-
rectly applied to the treatment of adiabatic thermal boundary
conditions in the TLBM when δ = 1. Two problems are inves-
tigated to demonstrate its applicability.

The first example is based on D’Orazio’s work [14] for sim-
ulating natural convection in a square cavity. The temperature
difference between the left and right walls introduces a temper-
ature gradient in the fluid, and the consequent density difference
induces convection in the cavity. The top and bottom walls
are adiabatic, as depicted in Fig. 4. With the Boussinesq ap-
proximation, all the fluid properties are considered as constant,
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except the buoyancy term, which is assumed to depend linearly
on the temperature, ρG = ρβg(T − Tm)j, where β is the ther-
mal expansion coefficient, g is the acceleration due to gravity,
and j is the direction opposite to that of gravity. To account for
the buoyancy effect, a force term is included in the evolution
equation (1) of the fluid distribution functions as

f̄i (x + ei�t, t + �t) − f̄i (x, t)

= − 1

τf + 0.5

[
f̄i (x, t) − f

eq
i (x, t)

] + τf

τf + 0.5
Fi

where

Fi = G(ei − u)

RT
f

eq
i

The major control parameter is the Rayleigh number Ra =
βg�T H 3Pr/ν2, where �T is the temperature difference be-
tween the hot and cold walls; Pr = ν/α is the Prandtl num-
ber, measuring the momentum to heat diffusivity ratio; and
H is the height or width of the cavity. The diffusion velocity
U∗ = ν/(Pr H) is used to normalise the calculated velocities.
In [14], D’Orazio et al. assume a counter-slip thermal energy
density to handle Dirichlet and Neumann boundary conditions,
which is consistent with the second-order accurate boundary
treatment for fluid flow. We adopt their approach for the Dirich-
let boundary treatment, but apply the PPB scheme with δ = 1
for the adiabatic top and bottom walls. The simulations are per-
formed for Rayleigh numbers ranging from 103 to 106, Prandtl
number Pr = 0.71, and the relaxation times are chosen to be
τf = 0.1 and τg = 0.0704. The lattice grid used is 129 × 129
for Ra = 103 and Ra = 104, and 205 × 205 for Ra = 105 and
Ra = 106. The steady state temperature distribution is com-
pared. Table 2 lists the normalised maximum horizontal veloc-

Table 2
Comparison of velocity solutions

Rayleigh number umax(y/L) vmax(x/L)

This work Ra = 103 3.6520 (0.8125) 3.6960 (0.1797)

D’Orazio 3.6532 (0.8125) 3.7006 (0.1797)

This work Ra = 104 16.2318 (0.8203) 19.6280 (0.1172)

D’Orazio 16.2370 (0.8203) 19.6803 (0.1172)

This work Ra = 105 34.8905 (0.8578) 68.3229 (0.0637)

D’Orazio 34.8225 (0.8529) 68.7122 (0.0637)

This work Ra = 106 64.4220 (0.8526) 218.9540 (0.0380)

D’Orazio 64.8679 (0.8529) 221.1869 (0.0392)
Fig. 5. Isothermal contours of natural convection in a square cavity for four different Rayleigh numbers.
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Fig. 6. Temperature history of particle No. 9 obtained by Huang’s scheme and the PPB scheme.

Fig. 7. Heat convection and conduction in a particle system: Temperature distributions at several time instants.
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ity umax/U∗ at y/H = 0.5, the normalised maximum vertical
velocity vmax/U∗ at x/L = 0.5 and the locations of the maxi-
mum velocities.

It can be seen that the results agree very well with each other,
indicating that the PPB scheme can indeed be used for treat-
ing adiabatic thermal boundary conditions. Fig. 5 illustrates the
isothermal contours for different Rayleigh numbers.

The second example simulates heat transfer in a system com-
prising 30 circular particles that are randomly generated by
the advancing-front packing algorithm [18], and are in con-
tact with their neighbouring particles, as shown in Fig. 6(a).
The particles have different initial temperatures ranging from 0
to 1, and the four walls are adiabatic. The domain is divided
into a 200 × 200 lattice. The model parameters are chosen
as Ra = 105, Pr = 0.71, τf = 0.05 and τg = 0.005. Two ap-
proaches, the PPB scheme proposed in this work and the non-
slip thermal boundary approach proposed by Huang et al. [16],
are employed for handling the insulated outer boundaries. Fig. 6
plots the temperature evolution histories of particle No. 9 ob-
tained by the two approaches. It is clear that the results have an
excellent correspondence. Fig. 7 depicts the temperature con-
tours and total velocity vectors of the particle system at four
time instants, from which the complex patterns of thermal and
fluid flows, as well as a nearly steady-state thermal equilibrium
can be clearly observed.

5. Conclusions

The paper has introduced a novel numerical approach, the
partial bounce back scheme, to account for thermal contact re-
sistance between contacting surfaces within the framework of
the thermal lattice Boltzmann method. In particular, the cor-
relation between thermal contact resistance Rc and the partial
bounce back parameter δ has been established. A special case
of the scheme (δ = 1) leads to a new approach which can be
directly applied for the treatment of adiabatic thermal bound-
ary conditions in the TLBM. The numerical examples have
validated and demonstrated the accuracy and effectiveness of
the proposed methodology. Finally, the proposed partial bounce
back scheme can be readily extended to the 3D case and the rel-
evant work will be reported elsewhere.
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